Analysis of Netizen Opinions Regarding Jokowi's Fake Diploma on Social Media
DOI:
https://doi.org/10.55227/ijhess.v5i3.2043Keywords:
digital polarization, social network analysis, echo chambers, political communication, IndonesiaAbstract
This study investigates the structural characteristics of digital polarization within Indonesia’s online discourse on X (formerly Twitter) surrounding President Joko Widodo’s diploma controversy. Employing a quantitative Social Network Analysis (SNA) approach, the research mapped user interactions including tweets, retweets, replies, and mentions collected during the controversy’s peak from 2022 to 2023. The findings reveal a highly fragmented and polarized network dominated by a few influential accounts, particularly @abahiding, which holds the highest out-degree value (43). The network demonstrates a hub-and-spoke configuration with an average degree of 0.872, network diameter and path length of 1, graph density of 0.002, and modularity of 0.864. These indicators collectively reflect a star-like topology where communication is concentrated around central nodes and limited within ideologically homogeneous clusters. The absence of bridging actors and minimal cross group engagement further confirm the presence of echo chambers. Theoretically, these results align with public sphere, social identity, network, and polarization theories, indicating that X functions less as a deliberative space and more as a segregated arena for identity affirmation. Empirical evidence from this study confirms that the digital discourse surrounding Jokowi’s diploma on X was structurally polarized, concentrated around dominant actors, and devoid of bridging mechanisms. The platform failed to support deliberative democratic functions, instead exacerbating ideological insularity and emotional partisanship. The study underscores the critical need for strategic interventions. Enhancing public digital literacy, increasing algorithmic transparency, and designing platforms that incentivize cross-group interaction are essential for mitigating public fragmentation and restoring democratic discursive capacity within Indonesia’s digital ecosystem
References
Ahmad, A. H. (2020). “Sell-Outs, Fatsos or Whores?”: Representation of Politically Active Pakistani Women on Social Media. Pakistan Social Sciences Review, 4(1), 40–50. https://doi.org/10.35484/pssr.2020(4-i)04
Alfaruqy, M. Z. (2022). Nasionalisme Dari Perspektif Founding Father (Sebuah Analisis Psiko-Hermeneutik). Jurnal Penelitian Humaniora, 23(1), 1–11. https://doi.org/10.23917/humaniora.v23i1.19163
Cobrief. (2025). Education: Overview, definition, and example. Cobrief. https://www.cobrief.app/resources/legal-glossary/education-overview-definition-and-example/%0A
Dharma Putra, O., Armawati Sufa, S., & Ratnasari, E. (2022). Political Branding Ganjar Pranowo Melalui Media Sosial Instagram @ganjar_pranowo. Restorica: Jurnal Ilmiah Ilmu Administrasi Negara dan Ilmu Komunikasi, 8(2), 1–16. https://doi.org/10.33084/restorica.v8i2.3334
Diaz, M. (2023). A Domain-Specific Evaluation of the Performance of Selected Web-Based Sentiment Analysis Platforms. International Journal of Computer Systems & Software Engineering, 9(1), 01–09. https://doi.org/10.15282/ijsecs.9.1.2023.1.0105
Dressel, B., & Bonoan, C. R. (2024). Courts and Authoritarian Populism in Asia: Reflections From Indonesia and the Philippines. Law & Policy, 46(3), 277–297. https://doi.org/10.1111/lapo.12240
Häßler, T., Uluğ, Ö. M., Kappmeier, M., & Travaglino, G. A. (2020). Intergroup Contact and Social Change: An Integrated Contact‐Collective Action Model. Journal of Social Issues, 77(1), 217–241. https://doi.org/10.1111/josi.12412
Hobolt, S. B., Leeper, T. J., & Tilley, J. (2020). Divided by the Vote: Affective Polarization in the Wake of the Brexit Referendum. British Journal of Political Science, 51(4), 1476–1493. https://doi.org/10.1017/s0007123420000125
Jackson, J. C., Halberstadt, J., Takezawa, M., Liew, K., Smith, K. M., Apicella, C. L., & Gray, K. (2023). Generalized Morality Culturally Evolves as an Adaptive Heuristic in Large Social Networks. Journal of Personality and Social Psychology, 125(6), 1207–1238. https://doi.org/10.1037/pspa0000358
Jawad, M., Talreja, K., Bhutto, S. A., & Faizan, K. (2024). Investigating How AI Personalization Algorithms Influence Self-Perception, Group Identity, and Social Interactions Online. Review of Applied Management and Social Sciences, 7(4), 533–550. https://doi.org/10.47067/ramss.v7i4.397
Karami, A., Lundy, M., Webb, F., & Dwivedi, Y. K. (2020). Twitter and Research: A Systematic Literature Review Through Text Mining. Ieee Access, 8, 67698–67717. https://doi.org/10.1109/access.2020.2983656
Khaouja, I., Toribio-Flórez, D., Green, R., Rowden, C., Ang, C. S., & Douglas, K. M. (2025). Political communication and conspiracy theory sharing on twitter. Online Social Networks and Media, 47, 100313. https://doi.org/https://doi.org/10.1016/j.osnem.2025.100313
Mukti, G. W., Charina, A., & Kusumo, R. A. B. (2024). Aktor Penting Dalam Ekosistem Kewirausahaan Pertanian Hortikultura Di Jawa Barat: Dilihat Dari Perspektif Teori Jaringan. Mimbar Agribisnis Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 10(1), 921. https://doi.org/10.25157/ma.v10i1.12673
Obia, V. (2023). Twitter Activism: Understanding the Twittersphere as the Foremost Community for Activism and Dragging in Nigeria. New Media & Society, 27(1), 151–167. https://doi.org/10.1177/14614448231172967
Overgaard, C. S. U., & Wolley, S. (2022). How social media platforms can reduce polarization. Brookings. https://www.brookings.edu/articles/how-social-media-platforms-can-reduce-polarization/
Pastor-Galindo, J., Zago, M., Nespoli, P., Bernal, S. L., Celdrán, A. H., Pérez, M. G., Ruipérez‐Valiente, J. A., Pérez, G. M., & Mármol, F. G. (2020). Spotting Political Social Bots in Twitter: A Use Case of the 2019 Spanish General Election. Ieee Transactions on Network and Service Management, 17(4), 2156–2170. https://doi.org/10.1109/tnsm.2020.3031573
Ratnastuti, A., Wijaya, M., & Utari, P. (2023). Virtual Public Space as a Medium for Conveying Aspirations and Criticism by the People of Surakarta City (Qualitative Study on Twitter Account @Gibran_tweet). Formosa Journal of Social Sciences (Fjss), 2(2), 243–260. https://doi.org/10.55927/fjss.v2i2.4478
Rawlings, C. M., Smith, J. A., Moody, J., & McFarland, D. A. (2023). Network Analysis. https://doi.org/10.1017/9781139794985
Rehatta, S. D., Sediyono, E., & Sembiring, I. (2022). Analisis Penyebaran Informasi Vaksin Covid-19 Pada Twitter Menggunakan Kolaborasi SNA Dan Sentiment Analysis. Jurnal Media Informatika Budidarma, 6(2), 1145. https://doi.org/10.30865/mib.v6i2.3955
Setianto, Y. P. (2020). Melihat Perbincangan #Pilpres2019 Di Media Sosial Dengan Social Media Analytics. Ultimacomm Jurnal Ilmu Komunikasi, 12(1), 14–33. https://doi.org/10.31937/ultimacomm.v12i1.1088
Soekiman, S., Brumadyadisty, G., Firdaus, M. Y., & Suprayitno, D. (2025). Facing Digital Transformation : The Role of the Prakerja Program in Enhancing Indonesian Workforce Competencies. July. https://doi.org/10.31941/pj.v24i2.6380
Stella, M., Ferrara, E., & De Domenico, M. (2021). Influencers and Bridge Users in Polarized Online Communities. Nature Human Behaviour, 5(12), 1575–1583. https://doi.org/10.1038/s41562-021-01141-4
Suhendra, S., & Pratiwi, F. S. (2024). Peran Komunikasi Digital Dalam Pembentukan Opini Publik: Studi Kasus Media Sosial. Iapa Proceedings Conference, 293. https://doi.org/10.30589/proceedings.2024.1059
Tornberg, P. (2022). How digital media drive affective polarization through partisan sorting. Proceedings of the National Academy of Sciences of the United States of America, 119(42), 1–11. https://doi.org/10.1073/pnas.2207159119
Wahyudi, W., & Loilatu, M. J. (2023). Analisis Perilaku Politik Generasi Milenial Dan Z Indonesia Dalam Virtual Sphere. Sosio Edukasi Jurnal Studi Masyarakat Dan Pendidikan, 6(2), 110–125. https://doi.org/10.29408/sosedu.v6i2.22783
Wróblewski, M., & Meler, A. (2024). Political Polarization May Affect Attitudes Towards Vaccination. An Analysis Based on the European Social Survey Data From 23 Countries. European Journal of Public Health, 34(2), 375–379. https://doi.org/10.1093/eurpub/ckae002
Żerebecki, B. G., Opree, S. J., Hofhuis, J., & Janssen, S. (2021). Can TV Shows Promote Acceptance of Sexual and Ethnic Minorities? A Literature Review of Television Effects on Diversity Attitudes. Sociology Compass, 15(8). https://doi.org/10.1111/soc4.12906
Zhang, Y., Lian, J. Q., Li, R. De, & Duan, H. T. (2023). Research on the evolution of netizens’ comment focus in university online public opinion: KTF-BTM topic model with topic-temporal-focus framework. Frontiers in Physics, 11(August), 1–18. https://doi.org/10.3389/fphy.2023.1251386
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alifian Ananda Wahyuana, Siska Armawati Sufa, Iwan Joko Prasetyo, Didik Sugeng Widiarto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.









































